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Abstract. A report is given of a study of the resonant contribution to the scattering length for
x-rays, evaluated using an atomic picture of the electrons. Armed with the scattering length one
can calculate the attenuation coefficient, dichroic signal and cross-sections for the elastic and
inelastic scattering of x-rays by magnetic materials. The formulation is more finely honed than
the one used in two previous studies. The additional information in the scattering length relates
to the spins of the electrons in the unfilled valence shell. For the dn and fn configurations, tables
of Racah unit spherical tensors are provided for ground states determined by Hund’s rules.

1. Introduction

In two previous papers, we have investigated a theoretical framework, using an atomic
description of electron states, for the interpretation of the attenuation and resonance-
enhanced scattering of x-rays by magnetic materials. The instrument used in the
investigation is the resonant scattering length from which one can readily calculate the
attenuation coefficient, dichroic signal, and the cross-sections for elastic and inelastic
scattering. On reducing some information on the plethora of intermediate states in the
scattering length, by summing over a judiciously chosen subset of intermediate-state
quantum numbers, we created a framework in which the measurable quantities are expressed
in terms of familiar atomic variables, e.g. magnetic multipoles and unit spherical tensors.
Our scattering length, to which we attached the soubriquetidealized, has been shown by us
to have much to recommend it.

In the present study we explore, in much the same vein, a more finely honed reduction of
the information on intermediate states in the resonant scattering length. On the one hand the
new scattering length is an improvement, in as much that it contains more information on the
valence electrons than the idealized scattering length, but weighed against this is an increased
technical complexity. A way of describing the difference between the two scattering lengths
is to note that the idealized one does not distinguish between the two spin–orbit-split partners
of a core state whereas the new one can.

As before, we aim to make full use of Racah unit spherical tensors to describe the
equivalent holes in the partly filled valence shell. Values of the tensors are listed for the dn

and fn configuration, appropriate for transition elements, lanthanides and actinides. Given
a wave function for the valence shell d or f electrons couched in terms of atomic orbitals
it is straightforward to calculate the scattering length, and from it the measurable quantities

0953-8984/97/204237+24$19.50c© 1997 IOP Publishing Ltd 4237



4238 S W Lovesey and E Balcar

that we have mentioned. In the event that a realistic wave function can be constructed from
states in oneJ -manifold, the concept of operator equivalents brings the mean value of the
scattering length, required to calculate both the dichroic signal and cross-section for Bragg
diffraction, to a relatively simple and attractive form.

In the field of atomic spectroscopy, it seems that the possibility of performing a restricted
sum over the intermediate-state quantum numbers in the first-order correction to a matrix
element was first explored by Griffith (1960), Judd (1962) and Ofelt (1962). Although the
objective for their work was different from ours, Judd and Ofelt reported work in which
they faced calculations not unlike the one we report. A different view of the physical
picture of summing over intermediate-state quantum numbers, with an ambition different
from ours, was given by Trammell (1962). In the latter work, Trammell expressed the
energy denominator in the matrix element, that provides for a resonance enhancement, in
terms of an integral in time. He then investigated approximations based on the limits of
fast and slow collisions; features of a fast-collision approximation for x-ray scattering were
briefly reported by Luoet al (1993).

The measurable quantities of interest are presented in the next section, together with
the resonant contribution to the scattering length. These topics are fully discussed in our
two previous papers on the subject: Lovesey and Balcar (1996) and Lovesey (1996), and
hereafter referred to as papers I and II, respectively. The following two sections focus on
the information in the scattering length that is new relative to the idealized scattering length.
To illustrate some aspects of the spin contributions to the scattering length, not found in
the idealized scattering length, we give in section 5 two examples of the calculation of
the circular dichroic signals for E1 and E2 absorption events. We choose not to give any
examples of the cross-sections for Bragg diffraction and inelastic scattering. These two
topics are discussed in paper I, and it is a straightforward exercise to repeat the calculations
reported there using in place of the idealized scattering length the more complete version
given here in section 3.

2. The attenuation coefficient and cross-sections

Let the primary and secondary x-rays in a scattering process have energiesE and E′,
respectively, and wave vectorsq andq′; then

E = h̄cq = 2πh̄c/λ

with similar expressions forE′ in terms ofq ′ or λ′. The initial and final (equilibrium) states
of the target atoms are defined by labelsµ andµ′, about which we have more to say later
on. A matrix element of the scattering length for these two states is denoted byf (µ;µ′),
and its mean value is denoted by〈f 〉. This last quantity determines the cross-section for
Bragg scattering, namely,

σ = || |〈f 〉|2|| (2.1)

where the double vertical bars indicate that an average is taken with respect to the states of
polarization in the primary beam of x-rays. A method for performing the average, in which
the polarization of the beam of x-rays is defined in terms of a Stokes vector, is described
by Lovesey and Collins (1996). The differential cross-section for inelastic scattering is

dσ

dE′
=
(
E′

E

)∑
µµ′

pµδ(h̄ω + Eµ − Eµ′)|| |f (µ;µ′)|2||. (2.2)
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Here, we have defined

h̄ω = E − E′

andEµ (Eµ′ ) is the energy of the initial (final) atomic state. The factorpµ is the probability
for the initial state to be available in the scattering process, and the sum of thepµ is unity.

For resonance-enhanced scattering, the scattering length in (2.1) and (2.2) is just the
resonant contribution to the scattering length. The latter quantity, evaluated for the forward-
scattering geometry (q = q′) and averaged with respect to the states of polarization in the
primary beam, determines the attenuation coefficientγ . We will give a result forγ expressed
in terms of our formulation of the resonant scattering length.

Let 1 be the difference between the mean energy of the absorption edge andEµ, and
let 1′ be the corresponding energy difference with respect toEµ′ . More than likely,1
and1′ will be different for E1 and E2 absorption events. The resonant scattering length
evaluated forE close to1 is taken to be

f (µ;µ′) = −
(

2πe

λ

)2(
1′

1

){
E −1+ i

2
0

}−1∑
R0

exp{−W(k)+ ik ·R0}Z(µ;µ′: R0).

(2.3)

In this expression, the vectors{R0} define the positions of the atoms, and0 is the total
decay width. The Debye–Waller factor might depend onR0, and it is unity in the forward
direction of scattering, for which

k = q − q′ = 0.

The matrix elementZ(µ;µ′: R0), which is the principal subject of the paper, depends on
R0 through chemical and magnetic order in the target sample.

We are now in a position to give our result for the attenuation coefficient, for a foil in
which the density of particles isn0. The mean value ofZ averaged with respect to states
of polarization in the primary beam, and evaluated for a forward-scattering geometry is
denoted by〈Z〉0. Taking the limit0→ 0,

γ = 2πλn0

(
e1

h̄c

)2

δ(E −1)〈Z〉0. (2.4)

The action of the delta function in (2.4) is to setλ = (12.40/1) Å with 1 expressed in
units of keV. Calculations of the attenuation coefficient using a band-structure description
of electronic states are reviewed by Ebert (1996).

3. Matrix elements

Here, we provide an expression for the matrix elementZ(µ;µ′); for the most part, we omit
the labelR0 to save on notation.

In paper I we consider an E1 absorption event. Using an atomic model, soµ andµ′

are shorthand for atomic quantum numbersν (seniority), S,L, J andM, we derive the
expression

Z(µ;µ′) = (l||C(1)||l̄)(l̄||C(1)||l)〈l|R|l̄〉2
∑
K

(2K + 1)1/2
{

1
l

K

l̄

1
l

}
×
∑
m0

〈θJM|T Km0
|θ ′J ′M ′〉X(K)−m0

(−1)m0. (3.1)
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In this expression,(l||C(1)||l̄) is the reduced matrix element of a spherical harmonic,
normalized in the manner proposed by Racah, of rank one taken between states of angular
momentuml and l̄ . The physical process that (3.1) describes is the transfer of a hole from
a valence shellln to a filled core state with angular momentuml̄, and〈l|R|l̄〉 is the radial
integral for the E1 event. The sum onK = 0, 1 and 2 andm0 (−K 6 m0 6 K) involves
a matrix element (θ = νSL) of a spherical tensor operator,T Km0

, appropriate tonh holes in
the valence shell. We return to this operator in a moment. The tensorX(K) depends only on
the polarization vectors for the primary and secondary x-rays, and its components are listed
in paper I, together with averages ofX(K), required to evaluate (2.4) for the attenuation
coefficient, and averages of|X(K)|2 required to evaluate cross-sections.

The expression forZ(µ;µ′) for an E2 event, that corresponds to (3.1) for an E1 event,
has a structure very similar to (3.1). There are two really significant differences between
the expressions for E1 and E2 events. For the latter case the sum onK extends up to 4,
and in place ofX(K) there is a more complicated tensor, denoted byH(K) in paper II, that is
formed from the polarization vectors of the primary and secondary x-rays, and unit vectors
q̂ and q̂′ which define the directions of propagation of the two beams. The spherical tensor
operatorT Km0

, which reflects the hole configuration in the valence shell, is common to the
matrix elements for E1, E2 and higher-order events.

We now give an expression for the matrix element ofT Km0
. The matrix element satisfies

the Wigner–Eckart theorem:

〈θJM|T Km0
|θ ′J ′M ′〉 = (−1)J−M

(
J

−M
K

m0

J ′

M ′

)
(θJ ||T (K: J̄ )||θ ′J ′) (3.2)

where the quantity which multiplies the phase factor and 3j -symbol is the reduced matrix
element for the absorption edge with total angular momentumJ̄ = l̄ ± 1

2. Of course, two
matrix elements withJ̄ = l̄ + 1

2 and J̄ = l̄ − 1
2 can be used to describe a case in which an

absorption edge does not closely correspond to one value ofJ̄ . Such a situation will arise
if the strength of the spin–orbit interaction for the core state and the Coulomb interaction,
measured in terms of Slater integrals, are similar in magnitude, and, in consequence, the
core state contains sizable amounts of both of the spin–orbit core states (Teramuraet al
1996). In papers I and II we described physical processes using the foregoing expressions
and a reduced matrix element:

(θJ ||T (K)||θ ′J ′) =
∑
J̄

(θJ ||T (K: J̄ )||θ ′J ′) (3.3)

and the corresponding scattering length was named an idealized scattering length.
Our expression forT (K: J̄ ) involves unit spherical tensorsW(a,b)K , which are standard

quantities in the theory of atomic spectra. The indicesa andb refer to different parts of the
atomic system, andK is the rank of the unit tensor. With our notation, which follows the
one adopted by Judd (1963), the indexa is the rank of the spin operator andb is the rank
of the orbital operator. The ordering of spin versus orbital operators is tied to the coupling
of spin and orbital quantum numbers in a Clebsch–Gordan coefficient, which we choose
to be (SMsLML|JM) (NB a mixture in a calculation ofSL- andLS-coupling schemes
can produce non-trivial errors). The reduced matrix elements ofT (K) andW(0,K)K are
related, of course, and differ only by a numerical factor which is given in (A.2). For the
convenience of the reader, an appendix to this paper contains the salient features of the unit
spherical tensors. Also, we give in tables listings of values of the reduced matrix elements
of W(a,b)K appropriate to the ground states of dn and fn as determined by Hund’s rules—see
later.
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We have arranged our result for the reduced matrix element ofT (K: J̄ ) so as to highlight
the information froma = 1 that is additional to the information froma = 0, which is all
contained in the reduced matrix element ofT (K). One finds, forJ̄ = l̄ ± 1

2,[
(θJ ||T (K: J̄ )||θ ′J ′)−

{
(2J̄ + 1)

2(2l̄ + 1)

}
(θJ ||T (K)||θ ′J ′)

]{
t

l

K

l̄

t

l

}

= ± (−1)K+1

(
6l̄(l̄ + 1)

(2K + 1)(2l̄ + 1)

)1/2

×
∑
b

(θJ ||W(1,b)K ||θ ′J ′)(2b + 1)

{
l̄

l̄

1

l

l

b

t

t

K

}
. (3.4)

It is at once clear that (3.4) satisfies (3.3), since the right-hand side of (3.4) has an equal
magnitude and opposite sign for the two allowed values ofJ̄ , which describes the total
angular momentum of the hole in the core state. The variablet depends on the nature of the
absorption event; for an E1 eventt = 1 and for an E2 eventt = 2. The range of the sum on
the integerb is restricted by two triangle conditions in the 9j -symbol, namely, 06 b 6 2l
and |K − 1| 6 b 6 (K + 1). A further restriction onb placed by the 9j -symbol is that
b+K must be an odd integer, otherwise the symbol is zero (this follows on noting that the
9j -symbol is unaltered by interchanging its top two rows, and this move also multiplies it
by a phase factor(−1)1+b+K). Many values of the 9j -symbol which are required in the
study of rare-earth atoms are tabulated by Balcar and Lovesey (1989), together with short
tables of 3j - and 6j -symbols. An extensive compilation of 3j - and 6j -symbols is given
by Rotenberget al (1959). Lastly,l̄ + l + t is an even integer, by virtue of a property of
(l̄||C(t)||l).

We conclude this section with a few words about the derivation of (3.4), and an
alternative form of the result that is useful in the description of valence electrons subjected
to a strong electrostatic field from the ligand ions. For one hole, the resonant scattering
length contains a product of one-particle matrix elements:

〈lJM|Ctq(R̂)|l̄J̄ M̄〉〈l̄J̄ M̄|Ctq ′(R̂)|lJ ′M ′〉 (3.5)

where q and q ′ label spherical components. In the energy denominator associated with
(3.5) is the energy of the intermediate state,l̄J̄ M̄. If we set aside the dependence of this
energy onJ̄ andM̄, say, we can perform a sum over these labels in the product of matrix
elements. This is the basis of the formulation given in papers I and II. The result is extended
to describe a valence shell withnh holes by using Racah’s methods for equivalent particles
in an atomic shell, and the energy of the intermediate state is replaced by some mean value
that remains to be chosen. The current work follows the same line of reasoning, except that
at the start we sum over̄M, and leaveJ̄ as a variable.

The exercise that brings us to the result (3.4) is relatively straightforward, uses standard
identities fornj -symbols, and can be described in a few sentences. First, use

〈lJM|Ctq(R̂)|l̄J̄ M̄〉 = (−1)J−M
(
J

−M
t

q

J̄

M̄

)
× (l||C(t)||l̄)(−1)3/2−J+l [(2J + 1)(2J̄ + 1)]1/2

{
J

l̄

t
1
2

J̄

l

}
(3.6)

and a similar expression for the second matrix element in (3.5). The result (3.6) is given by
Judd (1963) as equation (3-38) (a small printing error in (3-38), which has round brackets
(indicating a 3j -symbol) instead of curly brackets, is a glitch at first sight). The sum onM̄
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can be converted to a sum over products of 3j - and 6j -symbols. Here, the key step is to
arrange one of the 3j -symbols to be of the form demanded by the Wigner–Eckart theorem
(3.2). The next step is to isolatēJ in one 6j -symbol, achieved by twice using the sum
rule of Biedenharn and Elliott. Having reached this point the remaining product of four
6j -symbols, that do not contain̄J in their arguments, can be expressed as a product of
two 9j -symbols. The identities used in the foregoing are found in Rotenberget al (1959),
equations (2.8), (2.19), (3.1) and (3.22). The result for the one-particle matrix element
is extended tonh equivalent holes by the method proposed by Racah, and results in the
appearance of unit spherical tensors. Finally, to get the result for the reduced matrix element
of T (K: J̄ ) as it appears in (3.4) we have used an analytic expression for the one 6j -symbol
which containsJ̄ = l̄ ± 1

2.
The properties of the reduced matrix element (3.4) evaluated for a shell with one hole

merit comment. First, one should note that the two triangle conditions onJ̄ in (3.6) lead
to the result that for one hole in an otherwise full shell of electrons andJ = l + 1

2 the
absorption event for̄J = l̄ − 1

2 is forbidden. Turning to (3.4) only one of the two triangle
conditions onJ̄ is explicit in the result, namely,̄J = l̄ ± 1

2. It can be shown, however,
that for J̄ = l̄ − 1

2 the reduced matrix element ofT (K: J̄ ) given in (3.4) is zero. So, the
restriction placed on the absorption event, by the two triangle conditions onJ̄ , is indeed
preserved even after performing the sum onM̄ to create the reduced matrix element of
T (K: J̄ ).

In applying the results to the calculation of the cross-sections and attenuation coefficient
one may be faced with atomic wave functions that contain several atomic states. The
additions to the state determined purely by Hund’s rules will result from the actions of
inter-atomic forces, and perturbations to the valence shell created by the environment of
the atom, including like atoms. A specific case that can lead to a wave function for the
ground state, and excited states, with two or more values ofJ is when the magnitude of the
electrostatic field from the ligand ions is so large that it and the spin–orbit interaction must
be treated on an equal footing. In this regard, note that the dependence on the magnetic
quantum numbersM andM ′ of a matrix element ofT Km0

appears solely in the 3j -symbol
which features in the Wigner–Eckart theorem. Hence, if the degeneracy with respect to these
quantum numbers if lifted, e.g. by an external field or a molecular field capable of inducing
long-range magnetic order in the sample, the averaging to be done involves effecting the
averaging of 3j -symbols.

Some observable quantities take on a very simple structure when the atomic wave
function is drawn from oneJ -manifold. In this case one can adopt the practice, widespread
in other branches of spectroscopy, of using operator equivalents, e.g.,

〈JM|I (K)0 |JM〉 = (−1)J−M
(
J

−M
K

0
J

M

)
.

The average with respect to the magnetic quantum numbers is then represented by displaying
the operator in angular brackets,〈I (K)0 〉, which is in accord with our chosen notation of
angular brackets to denote the mean value of the enclosed quantity. ForK = 1, which
appears in (A.9),

〈JM|I (1)0 |JM〉 = M/(J ||J ||J )
where(J ||J ||J ) is the reduced matrix element of the angular momentum, and

〈I (1)0 〉 = 〈Jc〉/(J ||J ||J ) (3.7)

in which c labels the magnetic quantization axis.
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For some problems, the most natural basis in which to write the wave function of the
ground state is theSMSLML-basis, whereas the foregoing results are given in theSLJM-
basis. The transformation from the latter toSMSLML leads to a matrix element ofT Km0

expressed in terms of unit spherical tensorsW(a,b); the relation between the reduced matrix
elements(θJ ||W(a,b)K ||θ ′J ′) and (θ ||W(a,b)||θ ′) is (A.1), and table 1 contains listings of
the diagonal reduced matrix elements appropriate to 3d transition elements and rare-earth
elements. To work in theSMSLML-basis one replaces

(−1)J−M
(
J

−M
K

m0

J ′

M ′

)
(θJ ||W(a,b)K ||θJ ′)

which appears in〈θJM|T Km0
|θJ ′M ′〉, by

(−1)a+b+m0

{
(2K + 1)

(2a + 1)(2b + 1)

}1/2

(θ ||W(a,b)||θ)
∑
m,n

(
a

−m
K

m0

b

−n
)

× (−1)S−MS

(
S

−MS

a

m

S

M ′S

)
(−1)L−ML

(
L

−ML

b

n

L

M ′L

)
. (3.8)

Notice that the result that we give applies to the construction of〈SMSLML|T Km0
|SM ′SLM ′L〉

which is diagonal in the total spin and total orbital angular momentum. The result (3.8) is
the product of the Wigner–Eckart theorem applied to the spin and orbital operators, of ranka

andb, respectively, working in a tensor of rankK. For eithera = 0 orb = 0, equation (3.8)
takes a very simple form, e.g.a = 0 meansm = MS −M ′S = 0 andn = ML −M ′L = m0.

4. Spin-dependent contributions

In what follows we focus on the physical interpretation of the contributions to the resonant
scattering length on the right-hand side of (3.4), using theSLJM-basis. These new
contributions arise froma = 1 and are additions to the idealized scattering length obtained
for a = 0. The dependence of the new contributions on the atomic spin is quite simply
seen in the rank-one termW(1,0)1. For J = J ′, W(1,0)1 is proportional tog − 1 whereg
is the Land́e factor. This finding married with (3.7), which is valid within aJ -manifold,
leads to a contribution to〈f 〉 and to〈Z〉0 that is proportional to(g − 1)〈Jc〉 = 〈Sc〉.

It seems natural to consider the contributions according to their rankK, because the
value ofK determines the nature of the thermodynamic quantity. In simple cases, the
thermodynamic quantity is a magnetic multipole, e.g. the magnetic moment (K = 1) or
quadrupole moment (K = 2). The reduced matrix elements ofW(a,b)K are nothing more
than weighting factors, although, having said this, they can have a profound effect on the
observed quantity. As an example of what can occur consider an fn configuration and
K = 3. For n = 2, 5, 9 and 12 and Hund-rules ground statesW(0,3) = 0, so in this
instance there is no pure orbital contribution to the idealized scattering length. However,
bothW(1,2) andW(1,4) are non-zero for these configurations and therefore, there are non-zero
spin-dependent contributions to the scattering length.

As a step toward giving a physical interpretation of the rank-zero contribution we note
that the reduced matrix element of the spin–orbit coupling in the valence shell is proportional
to the reduced matrix element ofW(1,1)0; if j labels the electrons in the valence shell, we
find

(θJ ||
∑
j

(s · l)j ||θ ′J ′) = −
√

3(s||s||s)(l||l||l)(θJ ||W(1,1)0||θ ′J ′). (4.1)
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Table 1. Racah unit spherical tensors which appear in (3.4), (3.8), (A.1) and (A.2) are listed
for dn and fn valence shells. The quantum numbers are determined by the application of
Hund’s rules. Note that our unit spherical tensors are for holes, not electrons. This means
that for a + b = even integer> 0 our unit spherical tensors have an opposite sign to those
for electrons; fora + b = odd integer, values for holes and electrons are the same. For the
special casea = b = 0 one has(θ ||W(0,0)||θ ′) = δθ,θ ′nh{(2S + 1)(2L+ 1)/[2(2l + 1)]}1/2 and
(θJ ||W(0,0)0||θ ′J ′) = δθ,θ ′δJ,J ′nh{(2J + 1)/[2(2l + 1)]}1/2 wherenh is the number of holes in
the valence shell. Also, fornh = 1, (θ ||W(a,b)||θ) = {(2a + 1)(2b + 1)}1/2 and, fornh = 4l+1,
(θ ||W(a,b)||θ) = (−1)a+b+1{(2a + 1)(2b + 1)}1/2.

Ti3+ d1 nh = 9

(2D||W(0,1)||2D)
√

3 (2D3/2||W(0,1)1||2D3/2)
3

5

(2D||W(0,2)||2D) −
√

5 (2D3/2||W(0,2)2||2D3/2) −1

5

√
7

(2D||W(1,1)||2D) −3 (2D3/2||W(1,1)0||2D3/2) −
√

1

15

(2D||W(1,0)||2D)
√

3 (2D3/2||W(1,0)1||2D3/2) −1

5

√
2

(2D||W(1,2)||2D)
√

15 (2D3/2||W(1,2)1||2D3/2)
1

5

√
14

5

(2D||W(1,1)||2D) −3 (2D3/2||W(1,1)2||2D3/2)
1

5

√
2

3

(2D||W(1,3)||2D) −
√

21 (2D3/2||W(1,3)2||2D3/2) −2

5

V3+ d2 nh = 8

(3F||W(0,1)||3F) 3

√
7

5
(3F2||W(0,1)1||3F2)

2

3

√
2

(3F||W(0,2)||3F) −3

√
1

5
(3F2||W(0,2)2||3F2) − 6

35

√
2

(3F||W(1,1)||3F) −3

√
14

5
(3F2||W(1,1)0||3F2) −2

3

√
1

3

(3F||W(1,0)||3F) 2

√
21

5
(3F2||W(1,0)1||3F2) −2

3

(3F||W(1,2)||3F) 3

√
2

5
(3F2||W(1,2)1||3F2)

4

5

√
1

35

(3F||W(1,1)||3F) −3

√
14

5
(3F2||W(1,1)2||3F2)

4

3

√
1

21

(3F||W(1,3)||3F) 3

√
7

5
(3F2||W(1,3)2||3F2)

3

7

√
2

7

The selection rules forW(1,1)0 are thus the same as those familiar to us for the spin–orbit
coupling. This contrasts with the selection rules inT (0), which is diagonal with respect to
the total angular momentum, and diagonal with respect toθ = νSL.

For an E1 event in an atomic state that satisfies Hund’s rules we find(K = 0)

Z(µ;µ) = 1

3
(ε′ · ε)〈l|R|l̄〉2

{
l

2(2l̄ + 1)(2l + 1)

}
×
[
nh(2J̄ + 1)∓

(
1

S

)(
l − 1

l

)
[L(L+ 1)+ S(S + 1)− J (J + 1)]

]
. (4.2)

In this expression, derived from (3.1) and (A.12),ε andε′ are the polarization vectors for
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Table 1. (Continued)

Cr3+ d3 nh = 7

(4F||W(0,1)||4F) 2

√
21

5
(4F3/2||W(0,1)1||4F3/2)

4

5

(4F||W(0,2)||4F) 2

√
3

5
(4F3/2||W(0,2)2||4F3/2)

12

25

√
1

7

(4F||W(1,1)||4F) −2
√

7 (4F3/2||W(1,1)0||4F3/2) −4

3

√
1

15

(4F||W(1,0)||4F)
√

42 (4F3/2||W(1,0)1||4F3/2) −3

5

√
2

(4F||W(1,2)||4F) −2 (4F3/2||W(1,2)1||4F3/2) −12

25

√
2

35

(4F||W(1,1)||4F) −2
√

7 (4F3/2||W(1,1)2||4F3/2)
4

15

√
2

3

(4F||W(1,3)||4F)
√

14 (4F3/2||W(1,3)2||4F3/2)
6

35

Mn3+ d4 nh = 6

(5D||W(1,1)||5D) −3

2

√
5 (5D0||W(1,1)0||5D0) −1

2

√
1

15

Fe3+ d5 nh = 5

(6S||W(1,0)||6S)
√

21 (6S5/2||W(1,0)1||6S5/2)
√

7

Co3+ d6 nh = 4

(5D||W(0,1)||5D)

√
15

2
(5D4||W(0,1)1||5D4)

1

2

√
3

(5D||W(0,2)||5D) −5

√
1

2
(5D4||W(0,2)2||5D4) − 3

14

√
11

(5D||W(1,1)||5D)
3

2

√
5 (5D4||W(1,1)0||5D4) −

√
1

15

(5D||W(1,0)||5D) 2
√

15 (5D4||W(1,0)1||5D4)
√

6

(5D||W(1,2)||5D) −5

2

√
3 (5D4||W(1,2)1||5D4)

√
3

70

(5D||W(1,1)||5D)
3

2

√
5 (5D4||W(1,1)2||5D4)

√
11

42

(5D||W(1,3)||5D)
1

2

√
105 (5D4||W(1,3)2||5D4) − 3

28

√
11

7

the primary and secondary x-rays, and the sign∓ is dictated by the sign inJ̄ = l̄ ± 1
2.

The sign of the term 1/S is appropriate fornh 6 (2l + 1), and it is reversed for
nh > (2l + 1). This dependence of the sign onnh stems from the value of an even-
order unit tensor, in this caseW(1,1), for a state and its conjugate, namely, for the two states
(θ ||W(1,1)||θ) has equal magnitudes and opposite signs.

The thermodynamic properties of the odd-rank contributions to the matrix element ofZ

are sensitive to the existence of long-range magnetic order in the target sample, and feature
in the circular dichroic signal. TakingK = 1 there are two values forb, namelyb = 0 and
b = 2. The reduced matrix element ofW(1,0)1 is found in (A.7); it is diagonal with respect
to θ , and |J − 1| 6 J ′ 6 (J + 1). Hence, this term allows inelastic scattering to occur
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Table 1. (Continued)

Ni3+ d7 nh = 3

(4F||W(0,1)||4F) 2

√
21

5
(4F9/2||W(0,1)1||4F9/2)

√
11

6

(4F||W(0,2)||4F) −2

√
3

5
(4F9/2||W(0,2)2||4F9/2) −1

2

√
11

21

(4F||W(1,1)||4F) 2
√

7 (4F9/2||W(1,1)0||4F9/2) −
√

1

6

(4F||W(1,0)||4F)
√

42 (4F9/2||W(1,0)1||4F9/2)

√
11

3

(4F||W(1,2)||4F) −2 (4F9/2||W(1,2)1||4F9/2)
1

3

√
11

105

(4F||W(1,1)||4F) 2
√

7 (4F9/2||W(1,1)2||4F9/2)
1

3

√
11

2

(4F||W(1,3)||4F) −
√

14 (4F9/2||W(1,3)2||4F9/2)
1

14

√
11

3

Cu3+ d8 nh = 2

(3F||W(0,1)||3F) 3

√
7

5
(3F4||W(0,1)1||3F4)

3

4

√
3

(3F||W(0,2)||3F) 3

√
1

5
(3F4||W(0,2)2||3F4)

3

28

√
11

(3F||W(1,1)||3F) 3

√
14

5
(3F4||W(1,1)0||3F4) −1

2

√
3

5

(3F||W(1,0)||3F) 2

√
21

5
(3F4||W(1,0)1||3F4)

√
3

2

(3F||W(1,2)||3F) 3

√
2

5
(3F4||W(1,2)1||3F4) −1

2

√
3

70

(3F||W(1,1)||3F) 3

√
14

5
(3F4||W(1,1)2||3F4)

1

2

√
33

14

(3F||W(1,3)||3F) −3

√
7

5
(3F4||W(1,3)2||3F4)

3

28

√
11

7

Zn3+ d9 nh = 1

(2D||W(0,1)||2D)
√

3 (2D5/2||W(0,1)1||2D5/2)
1

5

√
14

(2D||W(0,2)||2D)
√

5 (2D5/2||W(0,2)2||2D5/2)
2

5

√
3

(2D||W(1,1)||2D) 3 (2D5/2||W(1,1)0||2D5/2) −1

3

√
2

5

(2D||W(1,0)||2D)
√

3 (2D5/2||W(1,0)1||2D5/2)
1

5

√
7

(2D||W(1,2)||2D)
√

15 (2D5/2||W(1,2)1||2D5/2) −2

5

√
1

5

(2D||W(1,1)||2D) 3 (2D5/2||W(1,1)2||2D5/2)
2

15

√
14

(2D||W(1,3)||2D)
√

21 (2D5/2||W(1,3)2||2D5/2) −1

5

√
3

7
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Table 1. (Continued)

Ce3+ f 1 nh = 13

(2F||W(0,1)||2F)
√

3 (2F5/2||W(0,1)1||2F5/2)
2

7

√
5

(2F||W(0,2)||2F) −
√

5 (2F5/2||W(0,2)2||2F5/2) −3

7

√
2

(2F||W(0,3)||2F)
√

7 (2F5/2||W(0,3)3||2F5/2)
1

7

√
15

(2F||W(0,4)||2F) −3 (2F5/2||W(0,4)4||2F5/2) −1

7

√
11

(2F||W(1,1)||2F) −3 (2F5/2||W(1,1)0||2F5/2) −2

3

√
1

7

(2F||W(1,0)||2F)
√

3 (2F5/2||W(1,0)1||2F5/2) −1

7

√
5

(2F||W(1,2)||2F)
√

15 (2F5/2||W(1,2)1||2F5/2)
2

7

√
6

5

(2F||W(1,1)||2F) −3 (2F5/2||W(1,1)2||2F5/2)
2

21

√
5

(2F||W(1,3)||2F) −
√

21 (2F5/2||W(1,3)2||2F5/2) −3

7

√
5

7

(2F||W(1,2)||2F)
√

15 (2F5/2||W(1,2)3||2F5/2) −1

7

√
6

5

(2F||W(1,4)||2F) 3
√

3 (2F5/2||W(1,4)3||2F5/2)
2

21

√
55

3

(2F||W(1,3)||2F) −
√

21 (2F5/2||W(1,3)4||2F5/2)
2

7

√
1

7

(2F||W(1,5)||2F) −
√

33 (2F5/2||W(1,5)4||2F5/2) −1

7

√
10

Pr3+ f 2 nh = 12

(3H||W(0,1)||3H)
3

2

√
55

7
(3H4||W(0,1)1||3H4) 3

√
6

35

(3H||W(0,2)||3H) −1

2

√
715

21
(3H4||W(0,2)2||3H4) −13

5

√
2

33
(3H||W(0,3)||3H) 0 (3H4||W(0,3)3||3H4) 0

(3H||W(0,4)||3H)

√
78

7
(3H4||W(0,4)4||3H4)

1

11

√
26

(3H||W(1,1)||3H) −3

√
55

14
(3H4||W(1,1)0||3H4) −

√
3

14

(3H||W(1,0)||3H) 2

√
33

7
(3H4||W(1,0)1||3H4) −2

√
6

35

(3H||W(1,2)||3H)

√
715

42
(3H4||W(1,2)1||3H4)

26

15

√
1

35

(3H||W(1,1)||3H) −3

√
55

14
(3H4||W(1,1)2||3H4) 2

√
3

55
(3H||W(1,3)||3H) 0 (3H4||W(1,3)2||3H4) 0

(3H||W(1,2)||3H)

√
715

42
(3H4||W(1,2)3||3H4) −13

5

√
1

165

(3H||W(1,4)||3H) −2

√
39

7
(3H4||W(1,4)3||3H4) −26

33

√
2

15
(3H||W(1,3)||3H) 0 (3H4||W(1,3)4||3H4) 0

(3H||W(1,5)||3H)

√
429

7
(3H4||W(1,5)4||3H4)

2

11

√
65

11
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Table 1. (Continued)

Nd3+ f 3 nh = 11

(4I||W(0,1)||4I)
√

39 (4I9/2||W(0,1)1||4I9/2)
1

2

√
105

11

(4I||W(0,2)||4I) −
√

65

33
(4I9/2||W(0,2)2||4I9/2) − 5

11

√
7

22

(4I||W(0,3)||4I) −2

√
91

33
(4I9/2||W(0,3)3||4I9/2) −28

11

√
5

143

(4I||W(0,4)||4I)
2

11

√
221 (4I9/2||W(0,4)4||4I9/2)

68

363

√
35

13

(4I||W(1,1)||4I) −
√

65 (4I9/2||W(1,1)0||4I9/2) −1

6

√
35

3

(4I||W(1,0)||4I)

√
390

7
(4I9/2||W(1,0)1||4I9/2) −3

√
15

77

(4I||W(1,2)||4I)
5

3

√
13

11
(4I9/2||W(1,2)1||4I9/2)

1

11

√
35

22

(4I||W(1,1)||4I) −
√

65 (4I9/2||W(1,1)2||4I9/2)
1

3

√
35

11

(4I||W(1,3)||4I)
2

3

√
455

11
(4I9/2||W(1,3)2||4I9/2)

4

11

√
5

11

(4I||W(1,2)||4I)
5

3

√
13

11
(4I9/2||W(1,2)3||4I9/2) − 7

11

√
5

286

(4I||W(1,4)||4I) − 2

11

√
1105

3
(4I9/2||W(1,4)3||4I9/2) − 952

3267

√
5

13

(4I||W(1,3)||4I)
2

3

√
455

11
(4I9/2||W(1,3)4||4I9/2) − 8

11

√
5

143

(4I||W(1,5)||4I) −1

3

√
2210

11
(4I9/2||W(1,5)4||4I9/2) − 85

121

√
14

143

between statesJ and J ± 1, and in the mean value off or Z it will give contributions
if the wave function contains admixtures of these manifolds. For the special case where
J = J ′ the reduced matrix element ofW(1,0)1 is very simple and the result is (A.8).

Turning toW(1,2)1, we note that

(θJ ||
∑
j

{3R̂(R̂ · s)− s}j ||θ ′J ′)

=
{

15

(2l − 1)(2l + 3)

}1/2

(l||l||l)(θJ ||W(1,2)1||θ ′J ′)
= − (θJ ||T||θ ′J ′) (4.3)

whereR̂ is a unit position vector for an electron. This result is the basis of a discussion
in the appendix which leads us to conclude that the thermal average value of the magnetic
dipole operator is proportional to〈Jc〉 multiplied by a factor that contains the right-hand
side of (4.3). Following Carraet al (1993), it is usual to denote this value of the magnetic
dipole operator by−〈Tc〉.

The 9j -symbol that accompaniesW(1,0)1 in T (1; J̄ ) is proportional to a 6j -symbol that
can be evaluated analytically with a formula in Edmonds (1960). WithW(1,2)1 it is useful
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Table 1. (Continued)

Pm3+ f 4 nh = 10

(5I||W(0,1)||5I)
1

2

√
195 (5I4||W(0,1)1||5I4)

√
21

10

(5I||W(0,2)||5I)
5

2

√
13

33
(5I4||W(0,2)2||5I4)

7

11

√
3

22

(5I||W(0,3)||5I) −
√

455

33
(5I4||W(0,3)3||5I4) −14

11

√
6

55

(5I||W(0,4)||5I) − 1

11

√
1105 (5I4||W(0,4)4||5I4) −238

363

√
2

13

(5I||W(1,1)||5I) −3

2

√
65

2
(5I4||W(1,1)0||5I4) −1

2

√
7

6

(5I||W(1,0)||5I) 2

√
195

7
(5I4||W(1,0)1||5I4) −4

√
6

35

(5I||W(1,2)||5I) −5

2

√
13

22
(5I4||W(1,2)1||5I4) − 1

11

√
7

5

(5I||W(1,1)||5I) −3

2

√
65

2
(5I4||W(1,1)2||5I4) 7

√
1

165

(5I||W(1,3)||5I)

√
455

22
(5I4||W(1,3)2||5I4)

4

11

√
21

55

(5I||W(1,2)||5I) −5

2

√
13

22
(5I4||W(1,2)3||5I4)

7

22

√
3

55

(5I||W(1,4)||5I)
1

11

√
3315

2
(5I4||W(1,4)3||5I4)

476

1089

√
2

15

(5I||W(1,3)||5I)

√
455

22
(5I4||W(1,3)4||5I4) − 4

11

√
14

143

(5I||W(1,5)||5I) −1

2

√
1105

11
(5I4||W(1,5)4||5I4) −119

121

√
5

143

to exploit the result

{
l̄

l

t

l̄

l

t

1
2
1

}
= 1

2

(
1

30

)1/2 [
(l||l||l)(l̄||l̄||l̄)

√
(2l − 1)(2l + 3)t (t + 1)(2t + 1)

]−1

× [l(l + 1){l(l + 1)+ 2l̄(l̄ + 1)+ 2t (t + 1)} − 3{t (t + 1)− l̄(l̄ + 1)}2].

(4.4)

Higher-rankT (K: J̄ )s can contain reduced matrix elements ofW(a,b) found in lower-
rank tensors, e.g.T (2: J̄ ) containsW(1,1), which we encountered inT (0: J̄ ), andW(1,3).
By and large, there is not too much that can be usefully added in the way of physical
intuition to the meaning of the higher-orderW(a,b)s. Relations analogous to (4.1) and (4.3)
can be found, using a little ingenuity, but they seem to have little value in extending our
understanding about the physical properties of the valence electrons, simply because the
relations involve complex combinations of electron operators. Instead, we refer the reader
to table 1 which contains the reduced matrix elements(θJ ||W(1,b)K ||θJ ) for the dn and fn

configuration and values ofθ = νSL andJ determined by Hund’s rules. Table A1 contains
all the 9j -symbols that accompany these reduced matrix elements in(θJ ||T (K: J̄ )||θJ ).
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Table 1. (Continued)

Sm3+ f 5 nh = 9

(6H||W(0,1)||6H) 3

√
55

14
(6H5/2||W(0,1)1||6H5/2)

3

7

√
5

(6H||W(0,2)||6H)

√
715

42
(6H5/2||W(0,2)2||6H5/2)

13

21

√
1

2
(6H||W(0,3)||6H) 0 (6H5/2||W(0,3)3||6H5/2) 0

(6H||W(0,4)||6H) −2

√
39

7
(6H5/2||W(0,4)4||6H5/2) −13

21

√
1

11

(6H||W(1,1)||6H) −3

√
11

2
(6H5/2||W(1,1)0||6H5/2) −

√
1

7

(6H||W(1,0)||6H)
√

165 (6H5/2||W(1,0)1||6H5/2) −5

7

√
5

(6H||W(1,2)||6H) −
√

143

6
(6H5/2||W(1,2)1||6H5/2) −13

21

√
2

15

(6H||W(1,1)||6H) −3

√
11

2
(6H5/2||W(1,1)2||6H5/2)

1

7

√
5

(6H||W(1,3)||6H) 0 (6H5/2||W(1,3)2||6H5/2) 0

(6H||W(1,2)||6H) −
√

143

6
(6H5/2||W(1,2)3||6H5/2)

13

21

√
1

30

(6H||W(1,4)||6H) 2

√
39

5
(6H5/2||W(1,4)3||6H5/2)

26

63

√
5

33
(6H||W(1,3)||6H) 0 (6H5/2||W(1,3)4||6H5/2) 0

(6H||W(1,5)||6H)

√
429

5
(6H5/2||W(1,5)4||6H5/2)

13

231

√
10

Eu3+ f 6 nh = 8

(7F||W(1,1)||7F) −
√

14 (7F0||W(1,1)0||7F0) −1

3

√
2

21

Gd3+ f 7 nh = 7

(8S||W(1,0)||8S) 6 (8S7/2||W(1,0)1||8S7/2) 2
√

3

5. Dichroic signals

By way of illustrations, we report two examples of the use of (3.4) to calculate the circular
dichroic signal. First, we consider E1 events and give a general expression for the signal
in terms of atomic variables, and, secondly, we report the value of the signal for E2 events
and a valence shell f9 with a pure Hund-rules ground state.

The dichroic signal is defined to be the difference in the attenuation coefficient evaluated
for two values of the mean helicity of the primary beam of equal magnitude and opposite
sign. In the notation of Lovesey and Collins (1996), which is used here, the mean helicity
is P2, the second parameter in the Stokes vector that describes the states of polarization in
a beam of x-rays. A look at equation (2.4) for the attenuation coefficient reveals that it is
sufficient to study the quantity

1Z = 〈Z(P2)〉0− 〈Z(−P2)〉0. (5.1)

For E1 absorption events〈Z〉0 containsε′ ×ε averaged with respect to states of polarization
in the primary beam and evaluated for the forward-scattering geometry. The result is given
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Table 1. (Continued)

Tb3+ f 8 nh = 6

(7F||W(0,1)||7F)

√
21

2
(7F6||W(0,1)1||7F6)

1

4

√
13

(7F||W(0,2)||7F) −
√

35

2
(7F6||W(0,2)2||7F6) −5

4

√
13

33

(7F||W(0,3)||7F) 7

√
1

2
(7F6||W(0,3)3||7F6)

√
13

33

(7F||W(0,4)||7F) −3

√
7

2
(7F6||W(0,4)4||7F6) − 1

33

√
221

(7F||W(1,1)||7F)
√

14 (7F6||W(1,1)0||7F6) −1

2

√
13

42

(7F||W(1,0)||7F) 2
√

42 (7F6||W(1,0)1||7F6)
√

13

(7F||W(1,2)||7F) −
√

70

3
(7F6||W(1,2)1||7F6)

1

6

√
13

6

(7F||W(1,1)||7F)
√

14 (7F6||W(1,1)2||7F6)
1

2

√
65

66

(7F||W(1,3)||7F) 7

√
2

3
(7F6||W(1,3)2||7F6) −1

2

√
65

462

(7F||W(1,2)||7F) −
√

70

3
(7F6||W(1,2)3||7F6) −

√
13

66

(7F||W(1,4)||7F) −
√

42 (7F6||W(1,4)3||7F6)
2

33

√
13

3

(7F||W(1,3)||7F) 7

√
2

3
(7F6||W(1,3)4||7F6)

2

9

√
221

77

(7F||W(1,5)||7F)

√
154

3
(7F6||W(1,5)4||7F6) − 1

99

√
1105

22

in paper I, and it is iP2q̂ where q̂ is a unit vector in the direction of propagation of the
primary beam. Using this result, and (3.4) to evaluate the matrix element (3.1), we arrive
at

1Z = −〈l|R|l − 1〉2
2(4l2− 1)

P2q̂ · 〈J〉
{
(2− g)(2J̄ + 1)± 4

3
(l − 1)

×
[
l(g − 1)+ (2l + 3)

(J ||J ||J )(θJ ||T||θJ )
]}
. (5.2)

Here,J̄ = l̄± 1
2, and the reduced matrix element ofT is defined in (4.3). In arriving at (5.2)

we have assumed that the wave functions used to calculate the mean value ofZ are drawn
from oneJ -manifold, which then permits the use of an operator equivalent. Note that the
result (5.2) comes solely from the tensor of rank one, and the temperature dependence is
that of the magnetic moment.

The coefficients of〈L〉, 〈S〉 and the magnetic dipole operator inside curly brackets in
(5.2) agree with the values reported by Carraet al (1993); see, also, Ankudinov and Rehr
(1995). This finding implies that the physical picture behind our scattering length is the
same as that in the calculation, specific to the dichroic sum rule, performed by Carraet al.
In this connection, also note that our idealized scattering length reproduces the sum rule for
dichroic signals due to Tholeet al (1992).

As a final topic, we consider the E2 dichroic signal for the valence shell configuration
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Table 1. (Continued)

Dy3+ f 9 nh = 5

(6H||W(0,1)||6H) 3

√
55

14
(6H15/2||W(0,1)1||6H15/2)

1

3

√
170

7

(6H||W(0,2)||6H) −
√

715

42
(6H15/2||W(0,2)2||6H15/2) −1

7

√
34

(6H||W(0,3)||6H) 0 (6H15/2||W(0,3)3||6H15/2) 0

(6H||W(0,4)||6H) 2

√
39

7
(6H15/2||W(0,4)4||6H15/2)

8

21

√
323

143

(6H||W(1,1)||6H) 3

√
11

2
(6H15/2||W(1,1)0||6H15/2) −5

3

√
2

21

(6H||W(1,0)||6H)
√

165 (6H15/2||W(1,0)1||6H15/2)
2

3

√
170

7

(6H||W(1,2)||6H) −
√

143

6
(6H15/2||W(1,2)1||6H15/2)

2

3

√
17

105

(6H||W(1,1)||6H) 3

√
11

2
(6H15/2||W(1,1)2||6H15/2)

2

21

√
85

(6H||W(1,3)||6H) 0 (6H15/2||W(1,3)2||6H15/2) 0

(6H||W(1,2)||6H) −
√

143

6
(6H15/2||W(1,2)3||6H15/2) −1

7

√
646

65

(6H||W(1,4)||6H) 2

√
39

5
(6H15/2||W(1,4)3||6H15/2) −16

63

√
323

715
(6H||W(1,3)||6H) 0 (6H15/2||W(1,3)4||6H15/2) 0

(6H||W(1,5)||6H) −
√

429

5
(6H15/2||W(1,5)4||6H15/2)

1

77

√
3230

13

f 9, 6H15/2, for which g = 4/3, and l̄ = l − t = 1. This configuration is appropriate for
Dy3+, and the E2 dichroic signal of dysprosium has been measured by Langet al (1995).

The appropriate expression for the matrix element ofZ in terms of the reduced matrix
element ofT (K: J̄ ) is found in paper II. For the case in hand,

8 = 3

10
{q〈l|R2|l − 2〉}2

and we use entries in tables 1 and A1 to evaluate the right-hand side of (3.4). The rank-one
contribution to1Z is (K = 1)

1Z = −(8P2q̂ · 〈J〉/945)

{
2J̄ + 1± 6

5

}
where the± sign prefaces the contribution made by the spin-dependent part of the scattering
length, and the choice of sign goes with̄J = l̄ ± 1/2 = 3/2 or 1/2. Evidently, the rank-
one contribution to the dichroic signal is largest at the edge withJ̄ = 3

2. The term in the
rank-three contribution witha = 0 is zero. (This result is found for fn with n = 2, 5, 9
and 12.) In consequence, the rank-three contribution to the dichroic signal for Dy3+, in the
ground state determined by Hund’s rules, arises solely from the spin-dependent contribution
to the matrix element ofZ. We find (K = 3)

1Z = ±0.0598H(3) · 〈I(3)〉.
The seven spherical components ofH(3) are given in paper II, andI(3) has components



Absorption and scattering of x-rays by magnetic materials 4253

Table 1. (Continued)

Ho3+ f 10 nh = 4

(5I||W(0,1)||5I)
1

2

√
195 (5I8||W(0,1)1||5I8)

3

4

√
51

7

(5I||W(0,2)||5I) −5

2

√
13

33
(5I8||W(0,2)2||5I8) − 1

20

√
323

7

(5I||W(0,3)||5I) −
√

455

33
(5I8||W(0,3)3||5I8) − 1

28

√
323

(5I||W(0,4)||5I)
1

11

√
1105 (5I8||W(0,4)4||5I8)

3

4

√
323

1001

(5I||W(1,1)||5I)
3

2

√
65

2
(5I8||W(1,1)0||5I8) −

√
17

42

(5I||W(1,0)||5I) 2

√
195

7
(5I8||W(1,0)1||5I8)

√
51

7

(5I||W(1,2)||5I) −5

2

√
13

22
(5I8||W(1,2)1||5I8)

1

10

√
17

14

(5I||W(1,1)||5I)
3

2

√
65

2
(5I8||W(1,1)2||5I8)

1

2

√
323

70

(5I||W(1,3)||5I) −
√

455

22
(5I8||W(1,3)2||5I8)

1

28

√
323

10

(5I||W(1,2)||5I) −5

2

√
13

22
(5I8||W(1,2)3||5I8) − 1

70

√
323

2

(5I||W(1,4)||5I)
1

11

√
3315

2
(5I8||W(1,4)3||5I8) − 1

42

√
323

11

(5I||W(1,3)||5I) −
√

455

22
(5I8||W(1,3)4||5I8) − 1

14

√
323

13

(5I||W(1,5)||5I)
1

2

√
1105

11
(5I8||W(1,5)4||5I8) − 1

22

√
1615

182

defined by

I (3)m0
= (−1)J−M

(
J

−M
3
m0

J

M ′

)
.

For the special case in which the wave function of the electrons in the valence shell has a
spatial symmetry so high that mean values ofI(3) with m0 = M −M ′ 6= 0 are zero it is
convenient to use for〈I (3)0 〉 the octupole operator equivalent given in paper II. Continuing
the calculation for this special case, the total E2 dichroic signal for Dy3+ is then (K = 1
and 3)

1Z = −(8P2q̂c/945)

{
〈Jc〉

(
2J̄ + 1± 6

5

)
∓
〈
Jc

{
5J 2

c −
761

4

}〉
[(5q̂2

c − 3)/455]

}
. (5.3)

Here, the magnetic quantization axis is labelled byc and q̂c is the projection of the unit
vectorq̂ on this axis. Note that for a saturated magnetic atom the octupole moment has the
value (

1

455

) 〈
Jc

{
5J 2

c −
761

4

}〉
= 3/2

and this is to be compared to the corresponding value of the magnetic moment〈Jc〉 = 15/2.
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Table 1. (Continued)

Er3+ f 11 nh = 3

(4I||W(0,1)||4I)
√

39 (4I15/2||W(0,1)1||4I15/2) 2

√
34

35

(4I||W(0,2)||4I)

√
65

33
(4I15/2||W(0,2)2||4I15/2)

2

35

√
34

(4I||W(0,3)||4I) −2

√
91

33
(4I15/2||W(0,3)3||4I15/2) −2

7

√
323

65

(4I||W(0,4)||4I) − 2

11

√
221 (4I15/2||W(0,4)4||4I15/2) −2

7

√
323

143

(4I||W(1,1)||4I)
√

65 (4I15/2||W(1,1)0||4I15/2) −2

√
2

21

(4I||W(1,0)||4I)

√
390

7
(4I15/2||W(1,0)1||4I15/2) 2

√
34

35

(4I||W(1,2)||4I)
5

3

√
13

11
(4I15/2||W(1,2)1||4I15/2) − 4

15

√
17

105

(4I||W(1,1)||4I)
√

65 (4I15/2||W(1,1)2||4I15/2)
4

7

√
17

5

(4I||W(1,3)||4I) −2

3

√
455

11
(4I15/2||W(1,3)2||4I15/2)

2

7

√
17

35

(4I||W(1,2)||4I)
5

3

√
13

11
(4I15/2||W(1,2)3||4I15/2)

2

35

√
646

65

(4I||W(1,4)||4I) − 2

11

√
1105

3
(4I15/2||W(1,4)3||4I15/2)

4

21

√
323

715

(4I||W(1,3)||4I) −2

3

√
455

11
(4I15/2||W(1,3)4||4I15/2) − 4

21

√
323

91

(4I||W(1,5)||4I)
1

3

√
2210

11
(4I15/2||W(1,5)4||4I15/2) − 2

231

√
3230

13

6. Comments

It has been demonstrated that the information in the proposed resonant scattering length
not present in the idealized scattering length is related to the spins of the electrons in the
valence shell of the magnetic atom. The idealized scattering length provides information
on the number of holes in the shell and its orbital properties. However, in these matters it
should be borne in mind that the difference between spin and orbital contributions to the
resonant scattering length depends on the representation of the atomic variables, e.g. for
a simple atomic wave function the thermodynamic quantities are magnetic multipoles and
one uses relations like〈S〉 = (g − 1)〈J〉 and 〈L〉 = (2− g)〈J〉 to convey the physical
origin of contributions to the scattering length. We have illustrated this point in section 5
in a treatment of the E2 circular dichroic signal for Dy3+. The result, (5.3), contains two
multipoles, of ranks one and three, created withJ and there are no explicit references to
spin or orbital operators.

The formulation presented here, and in papers I and II, provides a framework for the
interpretation of measured signals. In applying it to a particular measurement, on a magnetic
material, the first step is to create a realistic wave function for the electrons in the valence
shell, often a major task and the source of the input of much of the information on the
chemical and physical properties of the target sample. Atomic states derived from the
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Table 1. (Continued)

Tm3+ f 12 nh = 2

(3H||W(0,1)||3H)
3

2

√
55

7
(3H6||W(0,1)1||3H6)

5

12

√
13

(3H||W(0,2)||3H)
1

2

√
715

21
(3H6||W(0,2)2||3H6)

5

4

√
13

33
(3H||W(0,3)||3H) 0 (3H6||W(0,3)3||3H6) 0

(3H||W(0,4)||3H) −
√

78

7
(3H6||W(0,4)4||3H6) − 4

99

√
221

(3H||W(1,1)||3H) 3

√
55

14
(3H6||W(1,1)0||3H6) −5

6

√
13

42

(3H||W(1,0)||3H) 2

√
33

7
(3H6||W(1,0)1||3H6)

1

3

√
13

(3H||W(1,2)||3H)

√
715

42
(3H6||W(1,2)1||3H6) −1

6

√
13

6

(3H||W(1,1)||3H) 3

√
55

14
(3H6||W(1,1)2||3H6)

5

6

√
65

66
(3H||W(1,3)||3H) 0 (3H6||W(1,3)2||3H6) 0

(3H||W(1,2)||3H)

√
715

42
(3H6||W(1,2)3||3H6)

√
13

66

(3H||W(1,4)||3H) −2

√
39

7
(3H6||W(1,4)3||3H6)

8

99

√
13

3
(3H||W(1,3)||3H) 0 (3H6||W(1,3)4||3H6) 0

(3H||W(1,5)||3H) −
√

429

7
(3H6||W(1,5)4||3H6)

1

33

√
1105

22

application of Hund’s rules are likely to be a guide, at best, to observed features.
There is an analogue to resonance-enhanced x-ray scattering in the scattering of a beam

of neutrons by a sample of condensed matter. In this instance, the resonance process is
provided by compound states of nuclei, and the information obtained from an interpretation
of the scattered signal relates to the structures and motions of molecules in the sample
(Trammell 1984).
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Appendix

Here we bring together some information on the reduced matrix element(θJ ||W(a,b)K ||θ ′J ′)
that appears in(θJ ||T (K: J̄ )||θ ′J ′) from which our matrix element of the resonant scattering
length is constructed. The labelθ = νSL whereν is the seniority quantum number. We
adopt the definition of the reduced matrix element proposed by Judd (1963); in this case,
(θJ ||W(a,b)K ||θ ′J ′) is proportional to a second reduced matrix element,(θ ||W(a,b)||θ ′), that
is of the type studied by Racah (1943). The proportionality constant carries the dependence



4256 S W Lovesey and E Balcar

Table 1. (Continued)

Yb3+ f 13 nh = 1

(2F||W(0,1)||2F)
√

3 (2F7/2||W(0,1)1||2F7/2)
3

7

√
3

(2F||W(0,2)||2F)
√

5 (2F7/2||W(0,2)2||2F7/2)
5

7

(2F||W(0,3)||2F)
√

7 (2F7/2||W(0,3)3||2F7/2)
1

7

√
22

(2F||W(0,4)||2F) 3 (2F7/2||W(0,4)4||2F7/2)
3

7

√
2

(2F||W(1,1)||2F) 3 (2F7/2||W(1,1)0||2F7/2) −
√

1

21

(2F||W(1,0)||2F)
√

3 (2F7/2||W(1,0)1||2F7/2)
2

7

√
3

(2F||W(1,2)||2F)
√

15 (2F7/2||W(1,2)1||2F7/2) −1

7

√
2

(2F||W(1,1)||2F) 3 (2F7/2||W(1,1)2||2F7/2)
1

7

√
10

(2F||W(1,3)||2F)
√

21 (2F7/2||W(1,3)2||2F7/2) −1

7

√
10

7

(2F||W(1,2)||2F)
√

15 (2F7/2||W(1,2)3||2F7/2)
1

7

√
11

(2F||W(1,4)||2F) 3
√

3 (2F7/2||W(1,4)3||2F7/2) − 2

21

√
2

(2F||W(1,3)||2F)
√

21 (2F7/2||W(1,3)4||2F7/2)
2

7

√
22

7

(2F||W(1,5)||2F)
√

33 (2F7/2||W(1,5)4||2F7/2) −1

7

√
5

11

of (θJ ||W(a,b)K ||θ ′J ′) on J andJ ′. The indicesa andb refer to different atomic variables,
and with Judd’s notation and phase convention the indexa is the rank of the spin variable
and b is the rank of the orbital variable. The second type of reduced matrix element is
built from fractional parentage coefficients. In one sense, the(θ ||W(a,b)||θ ′) are quantities
characteristic of then-electron configurationln, and they satisfy useful symmetry relations
(Racah 1943). The symmetry with respect to a state and its conjugate (both states have the
same quantum numbers) is grouped according to whethera + b is an even or odd integer,
and it is summarized in paper I.

In the following material we use the angular momentum coupling scheme of Russell
and Saunders. Papers I and II contain results for this scheme and thejj -coupling scheme.
Applications of the latter to properties of the dichroic signal are also explored by van der
Laan and Thole (1996).

First of all,

(θJ ||W(a,b)K ||θ ′J ′) =
{
(2J + 1)(2K + 1)(2J ′ + 1)

(2a + 1)(2b + 1)

}1/2
{
S

L

J

S ′

L′

J ′

a

b

K

}
(θ ||W(a,b)||θ ′).

(A.1)

For a = 0 or b = 0 the 9j -symbol is proportional to a 6j -symbol. Properties ofnj -symbols
are reviewed by Rotenberget al (1959), Edmonds (1960) and Judd (1963), among others.
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Table A1. Values of the 9j -symbols needed in the reduced matrix element (3.4) are listed for
dn and fn configurations, and E1 and E2 absorption events.

l̄ l t

l̄ l t

a b K


l̄ = 1, l = 2, t = 1

a b K 9j -symbol

1 1 0 221
1

6

√
1

5

1 0 1 ∗231 −1

6

√
1

15

1 2 1 2321
1

30

√
7

3

1 1 2 ∗223 − 1

30

√
1

5

1 3 2 113
1

5

√
1

30

For example, ifa = 0 thenb = K andS = S ′, and

(θJ ||W(0,K)K ||θ ′J ′) = δs,s ′(−1)L
′+J+S+K

[
(2J + 1)(2J ′ + 1)

(2S + 1)(2K + 1)

]1/2{
J ′

L

L′

J

S

K

}
× (θ ||W(0,K)||θ ′).

A key relation in our work is

(θJ ||T (K)||θ ′J ′) = 21/2(θJ ||W(0,K)K ||θ ′J ′)

= δs,s ′(−1)L
′+J+S+K

{
(2J + 1)(2J ′ + 1)

(2K + 1)

}1/2{
J ′

L

L′

J

S

K

}
(θ ||V (K)||θ ′)

(A.2)

in which we have used

(θ ||W(0,K)||θ ′) =
{

1

2
(2S + 1)

}1/2

(θ ||V (K)||θ ′). (A.3)

Values of(θ ||V (K)||θ ′) for pn, dn and fn configurations are given by Nielson and Koster
(1963), and the values required in the study of rare-earth atoms are listed by us in papers
I and II. ForK = 0, (θ ||V (K)||θ ′) is diagonal with respect toθ and proportional to the
number of holes,nh, in the configuration. This and several more results are found in paper I.

Other results used here are

(θ ||W(1,0)||θ ′) = δθ,θ ′
{

2(2L+ 1)

(2l + 1)

}1/2

(S||S||S) (A.4)

and

(θ ||W(0,1)||θ ′) = δθ,θ ′
{

3(2S + 1)

2

}1/2
(L||L||L)
(l||l||l) . (A.5)

In these expressions, the reduced matrix elements ofS,L and l are {S(S + 1)(2S + 1)}1/2
and similar results forL and l. (If both expressions are written in terms of spin and orbital
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Table A1. (Continued)
l̄ l t

l̄ l t

a b K


l̄ = 2, l = 3, t = 1

a b K 9j -symbol

1 1 0 3411
2

9

√
2

35

1 0 1 ∗0311 −1

3

√
1

105

1 2 1 3231
2

15

√
2

35

1 1 2 ∗3431 − 2

45

√
2

35

1 3 2 1032
1

35

√
2

5

l̄ = 1, l = 3, t = 2

a b K 9j -symbol

1 1 0 1311
1

3

√
2

105

1 0 1 ∗0311 −1

3

√
1

105

1 2 1 3231
2

15

√
2

35

1 1 2 ∗3322 − 2

105

√
2

3

1 3 2 1123
1

35

√
6

7

1 2 3 ∗0133 − 1

35

√
3

35

1 4 3 1313, 1
1

21

√
22

105

1 3 4 ∗1413 − 1

63

√
2

35

1 5 4 0402
1

63

variables they are symmetric in the variables, and we have chosen to write them down using
the explicit values 2s + 1= 2 and(s||s||s) = √(3/2).) From

(θJ ||W(K,0)K ||θ ′J ′) = δL,L′(−1)J
′+S+L+K

{
(2J + 1)(2J ′ + 1)

(2K + 1)(2L+ 1)

}1/2{
J ′

S

S ′

J

L

K

}
× (θ ||W(K,0)||θ ′) (A.6)

and from (A.4)

(θJ ||W(1,0)1||θ ′J ′) = δθ,θ ′(−1)J
′+S+L+1

{
2(2J + 1)(2J ′ + 1)

3(2l + 1)

}1/2

(S||S||S)
{
S

J

J ′

S

L

1

}
.

(A.7)
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An important special case for the last expression is its value forJ = J ′:

(θJ ||W(1,0)1||θ ′J ) = δθ,θ ′
{

2

3(2l + 1)

}1/2

(J ||J ||J )(g − 1) (A.8)

whereg is the Land́e factor. The corresponding result for(θJ ||W(0,1)1||θ ′J ) is proportional
to 2− g. We recall that within aJ -manifold, 〈S〉 = (g − 1)〈J〉 and〈L〉 = (2− g)〈J〉.

For a = 1 andK = 1, the next in line of the reduced matrix elements is the one with
b = 2 (matrix elements witha + b + K = odd integer do not appear inT (K: J̄ )). A
standard exercise reveals (see, e.g., Edmonds 1960)

〈θJM|
∑
j

{3R̂(R̂ · s)− s}j |θJM〉 = M(l||l||l)
(J ||J ||J )

{
15

(2l − 1)(2l + 3)

}1/2

(θJ ||W(1,2)1||θJ )

(A.9)

whereR̂ and s are, respectively, the unit position vector and spin operators of electrons
labelled byj in the ln-configuration. For a saturated magnetic atom,M = J , and on
adapting a result given by Carraet al (1993), the value of the right-hand side of (A.9) is
found to be (n 6 2l + 1)(
l − n+ 1

2

)
{L(L+ 1)[L(L+ 1)+ 2S(S + 1)+ 2J (J + 1)] − 3(S − J )2(S + J + 1)2}

× [2(2l + 3)(2l − 1)(2L− 1)S(J + 1)]−1. (A.10)

The odd tensor(θ ||W(1,2)||θ) has the property that its values forn electrons andnh holes
with n = nh are the same. Hence, forn > 2l + 1 the appropriate value of (A.10) is found
by replacingn by nh = 2(2l + 1)− n.

A little ingenuity enables one to go beyond (A.9) and construct other operators to
represent higher-order reduced matrix elements. Since they become quite complicated, and
so have only a modest physical appeal, we shall not go further than the result (A.9).

We conclude with a special case forW(1,1) that has a simple expression. The reduced
matrix element ofW(1,1) evaluated for aθ given by Hund’s rules is

(θ ||W(1,1)||θ) = ±
(

3

2

)1/2( 1

S

)
(S||S||S)(L||L||L)

(l||l||l) (A.11)

where the upper (lower) sign is correct fornh 6 2l + 1 (nh > 2l + 1). From (A.11) we get

(θJ ||W(1,1)0||θJ ) = ±
{

1

2
(2J + 1)

}1/2 [L(L+ 1)+ S(S + 1)− J (J + 1)]

6S(l||l||l) . (A.12)

This expression is used to calculate the mean value of the spin–orbit interaction in a Hund-
rules ground state, and it leads to the Landé rule of intervals. Using (A.11) and (4.4) one
can obtain an analytic expression for(θJ ||W(1,1)2||θJ ).
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